Salinization of *Melaleuca*dominated wetlands of the Gippsland Lakes, Australia

Paul Boon Institute for Sustainability & Innovation Victoria University, Melbourne

Australian distribution of Melaleuca

The Gippsland Lakes

Lakes Entrance

Gippsland Sustainable Water Strategy (2010)

Consequences of artificial opening

Retreat of Phragmites australis

LaTrobe Rv – Dowd Morass estuary Early 1950s RAAF photo from Eric Bird

November 2010

Death of Eucalyptus camaldulesis

Death of Melaleuca ericifolia

Within Dowd Morass:

Death of adult plants Little floristic diversity

Loss of sexual reproduction

Morass kept full to prevent saline intrusions since 1992

But salinity is still very high

Rehabilitation predictions

Re-instating a dry phase in Dowd Morass would

- Improve condition of adult *Melaleuca*
- Allow *Melaleuca* to recruit sexually
- Increase floristic diversity of understorey

Risks included

- Activating acid sulfate soils
- Increasing water-column and sediment salinity
- Being too short to achieve desired outcomes
- Too ambitious with too little resources

Experimental manipulations

Beyond-BACI experimental design

Passive draw-down 2003-2004

Going well – then vandalism

2nd intervention: active draw-down 2005

Response to 2004 vandalism in 2005:

Pumping!

- 1 x 12" pump
- 1 x 10" pump

Pumped continuously for 28 days in early 2005

Active draw-down 2005

Beyond-BACI vegetation assessment

45 x 100-m long transects across wetland

- 20 in Control (flooded) sites
- 20 in Impact (drawdown) sites
- 5 in Reference (shoreline) sites

Dates: April 2003 (B), June 2004 (D), April 2005 (D), April 2006 (A)

Variables:

- Continuous water depth and salinity (data loggers)
- Water depth along transects every 0.5 m (36,000 data pts)
- Vegetation floristics and structure (overstorey & understorey cover and floristics etc) (>120,000 data pts)

Results

A) Water level

No big difference between Control and Impact water levels

B) Salinity

Confounding variability in salinity between Control and Impact sites

Alternative: non-BACI (gradient) analysis

Instead of ANOVA, use gradient analysis

Classification of the hydrology as per Brownlow et al. (1994)

Four water regimes In Dowd Morass

Gradient analysis much better than original BACI-ANOVA approach

Raulings, Morris & Boon (2010) *Freshwater Biology* 55: 701-715 Raulings, Morris & Boon (2011) *Freshwater Biology* 56: 2347-2369

What causes the diversity of hydrologies? Microtopographic relief

Caused by Melaleuca, Phragmites and Paspalum humps

Photo by Matt Hatton

Implications for wetland rehabilitation

Large-scale hummock creation, 2006

Results after 4 years

More information?

Copies of two technical handbooks (2005, 2007)

Summary hand-out of papers to date

Over some beers tonight